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CODING AN ANALOG VARIABLE FOR CONSTANT 
PERCENTAGE ERROR 

by 
Rodger A. Cliff 

Goddard Space Flight Center 

SUMMARY 

Systems are treated which code an analog variable as a se- 
quence of discrete values. Given one of these discrete values, 
there is necessarily some uncertainty about what value of the 
analog input variable produced the discrete output since there are 
only a finite number of distinct outputs. This paper will investi- 
gate the nature of this uncertainty or possible error .  

It is shown that a logarithmic quantization scheme produces 
an uncertainty in the output which is constant over the input range 
which the system is designed to cover. Relationships a r e  derived 
between the uncertainty which must be tolerated, the width of the 
input range to be covered, and the number of discrete outputs re- 
quired. These relationships a r e  presented both analytically and 
graphically. 
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CODING AN ANALOG VARIABLE FOR CONSTANT 
PERCENTAGE ERROR 

bY 
Rodger A. Cliff 

Goddard Space Flight Center 

INTRODUCTION 

An analog variable is one which may take on any value within a continuous range. In order to 
operate upon such a variable in a discrete device, such a s  a digital computer or  a digital data 
transmission link, it is necessary to convert the analog variable to discrete form. In other words, 
the analog variable, which may have any of an infinite number of values, must be mapped onto a 
finite set of discrete values. This is shown schematically in Figure 1 and graphically in Figure 2. 
The device which accomplishes the mapping is referred to as an analog to digital converter. It 
repeatedly samples the analog input x and 
produces a discrete output y for each of these 
samples. 

The analog variable is divided into inter- 
vals denoted A,B,C, ... in Figure 2. An input 
x which falls within a given interval produces 
an output y corresponding to that interval. 
For instance, if the input x has a value within 
the interval B the analog to digital converter 
p r o d u c e s an output y having the discrete 
value b .  Similarly, inputs within interval A 

produce an output a etc. 

CONVERTER 

outputs 

Figure 1 - Conversion of an analog variable 
to digital form. 

x (analog input) y (discrete outputs) 
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Figure 2 - Arbitrary quantization scheme. 
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There are various instances when it is necessary to convert a continuous variable into digital 
form: for  example, analog input to a digital computer, or  digital telemetry of continuous infor- 
mation. It is often desired that the possible percentage e r ro r  associated with each discrete output 
be less than a certain amount. A logarithmic quantization is used to accomplish this end. 

A 

D 

1 

In this paper the problem of logarithmic quantization of a continuous input into a finite number 
of outputs is discussed. Results are presented showing the necessary number of discrete outputs 
for  a given dynamic range and percentage error.  For those interested in binary systems, a dis- 
cussion of the number of bits required to express with a given accuracy an input variable of a 
given dynamic range is included. 

LOGARITHMIC QUANTIZATION 

Derivation of the Basic Relationships 

A derivation of the relationship between the number of discrete outputs, the dynamic range, 
and the percentage e r ro r  will be given. The relationship between the input x and the output y of a 

x (input) y (output) 

logarithmic quantization is depicted in Figure 3 
on linear axes, and in Figure 4 on log axes. Let 
an arbitrary quantization interval x range from 
a lower value x- to an upper value x+. The out- 
put y, corresponding to this interval is chosen 
to have a value between X- and x+. The choice 
is made such that the possible e r ro r  is 
minimized. 

The maximum possible positive percentage 
e r ro r  may be expressed as 

and the maximum possible negative percentage 
e r ro r  as 

In order to obtain a symmetrical e r ro r  bracket 
about y, , we will choose y, such that 

Figure 3 - Logarithmic quantization 
scheme - linear axes. 
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where Q is the maximum possible percentage 
error .  The three Equations 1 may now be 
solved for y, to obtain 

It is not surprising that the optimum value for 
y, is found to be halfway between x- and x'; cer- 
tainly it is the conclusion we reach intuitively. 

Equations 1 may also be solved for x- 
and X+ . 

x+ = (1 + A) Y, , ( 3 4  

Observe that the ratio x'/x- of the upper limit 
to the lower limit of the quantization interval X 
is independent of which interval X may be. This 
ratio shall be denoted by K : 

Q 
1 + -  100 K = -  n 

v 
1 - 1 0 0  

Figure 4 - Logarithmic quantization 
scheme - log axes. 

- X+ 
- - .  

X (4) 

Equation 4 says that for any interval X ,  X' = K X- ; therefore the levels that separate intervals are 
expressible in terms of the lower limit of the lowest interval, as shown in Figure 5. 

The dynamic range R is defined to be the ratio of the largest possible value of the input vari- 
able x to the smallest possible value of the input variable .x that fall within the range to be quantized. 
From Figure 5 we see that 

KN xo 

xO 

R : - -  - KN , (5 1 

where N is the number of quantization intervals. 
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To obtain N as a function of K (and therefore as a function of Q), 

we take the logarithms of both sides of Equation 5: 

1ogR = N l o g K  , (6 1 

or  

l o g  R 
N = m’ 

which in terms of Q is 

3rd Interval 
log  R 

N =  

2nd Interval 

1st  Interval 
This is the result we require, relating N (the number of quantization 
intervals required) to R (the dynamic range) and Q (the maximum 
possible f Percentage error). 

X O  

Figure5 - Decision levelsfor 
a logarithmic quantization. 

The Number of Bits Needed for a Binary System 

A binary code of B bits can specify that one out of 2B possible events has occurred. In the 
system under discussion, a particular event occurs when the input variable falls within a partic- 
ular one of the N quantization intervals. Therefore, there must be at least as many characters 
in the binary code as there a r e  quantization intervals. That is 

so that 

It is advantageous that N be a power of 2; then a binary code may be chosen such that each char- 
acter is used and full advantage is taken of the capacity of the binary system. In this case there 
a r e  N quantization intervals and N characters in the binary code. The relationship (Equation 10) 
w i l l  hold as an equality. 
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APPLICATION OF THE RESULTS OF THE DERIVATION 

Graphs of the Basic Equation 

To facilitate system design, the basic relationship of the logarithmic quantization scheme 
(Equation 8) has been plotted. Figure 6 shows the trade-off between the dynamic range and the 
number of intervals required for a given percentage error .  Since the number of intervals N varies 
as the logarithm of the dynamic range R for fixed percentage e r ro r  Q ,  the equation plots as a 
family of straight lines on semi-log coordinates. 

Figure 7, on the other hand, emphasizes the relationship between the number of intervals 
needed and the percentage error .  It may be shown that N varies approximately as 1/Q (see 
Appendix A); hence contours of constant R a r e  straight lines on fu l l  logarithmic coordinates. 

General Remarks 

A few general remarks are in order at  this point. First, notice that for the condition where 
the percentage e r ro r  is greater than about 5 percent, the number of quantization intervals re-  
quired for a given dynamic range is relatively insensitive to the percentage e r ro r  (see Figure 6). 
However, as the percentage e r ro r  approaches zero the number of intervals required increases 
rapidly. Notice also that the number of intervals needed is much more sensitive to changes in 
the dynamic range when the dynamic range is small than it is when the dynamic range is large. 
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Figure 6 - The trade-off between the dynamic range and number of intervals required. 
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Figure 7 - Relationship between number of intervals required and percentage error. 
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of intervals needed in about the same proportion as a change in dynamic range of from 10 to 
10,000 (a factor of 1,000). 

Application to Binary Systems 

Binary system parameters are plotted in Figures 8, 9, and 10. The basic relationship 
governing a binary system is obtained by combining Equation 8 with the inequality (Equation 9) to 
obtain 

The number of bits required is the smallest integer B suchthat Equation 11 is satisfied. 

Turning our attention to Figure 8, we see the number of bits B versus the e r r o r  Q for various 
values of the dynamic range R. This is a particularly useful presentation of system parameters, 
because the dynamic range is a characteristic of the input variable, and as such is often not 
under the control of the designer of the coding system. 

Since B must be an integer, the curves are discontinuous and have a stair-step appearance. 
The most desirable points on these curves are the circled lower corner points; at these points 
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Figure 8 - The binary system parameters B and Q. 
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Figure 9 - The binary system parameters Q and R. 
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Figure 10 - The binary parameters B and R. 

Equation 11 holds as an equality and full advantage is being taken of the capacity of the binary 
system. At these points one obtains the minimum percentage e r ro r  for any given dynamic range 
and number of bits. 

If, on the other hand, the designer is confronted with a system of fixed binary capacity, and 
he wishes to know the percentage e r ro r  versus the dynamic range, Figure 9 will be found useful. 
In this figure the percentage e r ro r  Q is plotted versus the dynamic range R for binary systems of 
from 2 to 10 bits. 

For  fixed percentage error ,  the trade-off between the number of bits and the dynamic range 
is shown in Figure 10. Again, the desirable operating points are the circled lower corner points 
where full use is made of the capacity of the binary system. It is helpful to use this graph when 
trying to decide just how wide a dynamic range to cover when the exact range of the input variable 
is not known and some guard space is to be left at the ends of the dynamic range. 

METHODS OF ACHIEVING LOGARITHMIC QUANTIZATION 

There are a number of methods which may be used to effect logarithmic quantization. Con- 
ceptually, the most appealing method is to use an analog to digital converter which has loga- 
rithmically spaced decision levels. This is the sor t  of device described heretofore. An equivalent 
result is produced if the logarithm of the input x is taken using analog techniques, and then the 
logarithm is subsequently quantized by a linear analog-to-digital converter. It is also possible to 
convert an analog input to digital form and to then take the logarithm using digital methods.* 

*D. H. Schaefer, Goddard Space Flight Center, has developed simple methods of computing logarithms digitally. 
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Unfortunately this approach requires a rather large capacity digital system preceeding the point 
where logarithms are computed. Particularly, there may be problems involved in obtaining a 
linear analog-to-digital converter which has both the required dynamic range and the required 
accuracy in the lower portion of the dynamic range. 

AN EXAMPLE 

A Logarithmic System 

It will be instructive to consider an example of a system using logarithmic quantization and 
to compare this to linear systems that might be used in the same application. We will assume 
that the input variable has values of interest which range from 1 to 10, and that we wish to obtain 
f 1 percent accuracy. In the example then, R = 10 and Q = 1. The number of bits that will be re- 
quired may be determined from Figure 8 by following the Q = 1 line up from the Q axis until it 
intersects the plot for R = 10. The intersection is found to lie on the B = 7 line; hence 7 bits will 
be required. Observe that the system will not be optimum in the sense that with 7 bits (128 
quantization intervals) either less e r ro r  or more dynamic range could be obtained. Reference to 
Figure 8 reveals that in a 7 bit system with a dynamic range of 10, the e r ro r  need be only f .9 per- 
cent. On the other hand, the Q = 1 contour in Figure 10 shows that for 7 bits the dynamic range 
may be as great as 13 without exceeding f 1 percent error.  

In our example, we will cover the 10 to 1 dynamic range with sufficient intervals to give f 1 
percent error.  This will require 

log R N =  

log($, 

log 10 

- log (%) 
= 116 i n t e r v a l s .  

Since 26 = 64 and 2' = 128, we require 7 bits. Since 128 - 116 = 12, 12 characters of the 7 bit 
binary code will not be required. These characters can be used to indicate various error  con- 
ditions, such as an input which was not within the prescribed dynamic range or  a malfunction of 
the electronic circuitry. 

Two Linear Systems 
If we do not wish to employ a logarithmic system, an obvious alternative is a linear system. 

Two such systems come immediately to mind. One has a possible e r ro r  of f 1 percent at fu l l  
scale and progressively greater e r ro r  as the value of the input variable decreases. The other 
will have f 1 percent e r ro r  at the lower end of the dynamic range and considerably less at the 
upper end. These represent extremes between which any system which is roughly equivalent to 
our logarithmic system will fall .  
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Consider f i rs t  the case where the e r ror  is to be f 1 percent at full  scale. As  before, the 
dynamic range will be 10. Starting at full scale (which we will take to be 10) the first few quan- 
tization intervals and the outputs which correspond to them a r e  shown at the top of Figure 11. At 
the other end of the dynamic range, the last few quantization intervals a r e  also shown. For the 
interval 9.8 < x < 10.0, the percentage e r ror  is Qf; = * ( -  U9.9) 100 = 1.01 percent; at the low 
end of the scale 1.0 < x < 1.2, QLS = * (. 1/1.1) 100 = 9.1 percent. Observe that the width of any 
quantization interval is 0.2; therefore ( 10 - l)/. 2 = 45 intervals will be required for this system. 

Since Z5 = 32 and 26 = 64, 6 bits will be required, thus 64 - 45 = 19, and 19 characters of the 
binary code a r e  not used. As was the case with the logarithmic system, these characters may be 
used to extend the dynamic range or  reduce error,  o r  they may serve as indication of malfunctions 
and er ror  conditions. 

The second linear system is shown in Figure 12. Again it will be assumed that the input 
. .  

= 

ranges from 1 to 10. For the interval 1.00 < x 

*111.07+.01 

01.05k.01 

c 1.02, O i l  = (.Ol/l.Ol) 100 = .99 percent. A s  the 

= 

: 

* I 1  

I 

10.0 

9.4 I::, 
9.2 

I 
I 

* I  
- 1  
‘ I  

1.2 

1 .o 

411.5k.l 

01.3k.1 

1.1 k.l 

Y 

- 
= I- 

X 

(1 1.03 k .01 

01.01 k .01 

Figure 1 1  - Linear system - Error f 1 percent 
of fu l l  scale. 

10 

10.00. 

9.98. 

9.96- 

9.94- 

1.08- 

1.06- 

1.04- 

1.02- 

1.00- 

Y 
4 

I .  
I 
I .  
I .  

Figure 12 - Linear system - Error f 1 percent 
of bottom scale. 
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value of the input variable increases, the e r ro r  
decreases until for the interval 9.98 < x < 10.00, 
Q;; = (.01/9.99) loo = .10 percent. Each in- 
terval has the width .02; so (io - 1)/.02 = 450 
intervals wi l l  be required. 28 = 256 and 
Z9 = 512; therefore 9 bits must be used in the 
binary system. Thus 512 - 450 = 62 unused 
characters. As before, they may be used to 
extend the dynamic range, reduce the error, 
or  indicate malfunctions and e r ro r  conditions. 

Comparison of logarithmic 
and linear Systems 

The quantization intervals of the l o g a -  
rithmic system are shown in Figure 13. Notice 
that near x = 10 they resemble those of the 
first linear system, but near x = 1 they re- 
semble those of the second linear system. 

Table 1 gives a comparison of the 1 o g a - 
rithmic system and the two linear systems. In 
order to achieve a percentage e r ro r  which is 
everywhere at least as small as that of the 
logarithmic system, a linear system (System 
C) requires over three times as many quanti- 
zation intervals. However, System C provides 
more accuracy than is needed throughout most 

.~ 

Characteristic 

1o.ooo 

9.803 

9.61 1 

9.422 

1.083 

1.061 

1.041 

1.020 

1 .mo 

I- * 

Figure 13 - Logarithmic system - Error f 1 percent 
of output. 

Greatest Input 
Least Input 
Dynamic Range 
Greatest Output 
Least Output 
Width of Quantization Intervals 
Number of Quantization Intervals 
Number of Bits Required 
Unused Characters in Binary Code 

Total Characters in Binary Code 

Y 

901 k .098 

707 f .096 

516 f .094 

072 k .011 

051 k .010 

030 k .010 

010f .010 

Table 1 

The Characteristics of Three Systems. 

System A: Linear, 
of greatest output 

10 
I 
10 

9.9 * .1 
1.1 f .1 
.2 
45 
6 
19 

64 

System B: Log, 
fl% of output 

10 
1 
10 

9.9 f .1 
1.01 f .01 

116 
7 
12 

.02y 

128 

System C: Linear, 
*I% of least output 

10 

10 
9.99 f .01 
1.01 f .01 

.02 
450 
9 
62 

512 
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of the dynamic range. This linear system is inefficient because it provides more information 
than is desired. System A, on the other hand, uses about 1/3 as many quantization intervals as 
the logarithmic system. Unfortunately it does not meet the e r r o r  specifications except at full  
scale. It is undersirable because it does not provide enough information. 

Although in the example the dynamic range of 10 ran from 1.0 to 10.0, the percentage e r ro r  
and the number of intervals required are a function only of the dynamic range, and not of the 
absolute value of the limits of the dynamic range. This applies to all three systems which were 
considered. 

It should be remarked that there are situations which require high accuracy in only a portion 
of the dynamic range. The remaining part  of the dynamic range can be covered by relatively wide 
quantization intervals. These systems must be tailored to specific applications. 

There a r e  other instances where the e r r o r  is specified to be f so many units, rather than as 
a percentage. In this case a linear system would be used. For example, system A provides an 
e r r o r  of f .l. The logarithmic system also meets this criterion, but it uses three times as many 
quantization intervals. E r ro r  would be specified in this way if for example the difference of two 
discrete outputs of near equal magnitude was to be calculated. 

CONCLUDING REMARKS 

It has been shown that a logarithmic system can be used to advantage to code an analog var- 
iable as a sequence of discrete outputs. This coding is such that the possible e r r o r  associated 
with each discrete output is the same. An example has shown that if a system is specified as 
having less than a certain percentage e r r o r  throughout its dynamic range, that a logarithmic 
system is considerably more efficient than a linear system. 

The basic equations describing the logarithmic system are repeated here for  convenience: 

Q 

Q 
1+m 

1-100 
- X+ _ -  

X 

x+ + x- 
Y, - ~. 2 

Appendix B contains the definitions of the symbols used in these equations and elsewhere in this 
paper. 
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A logarithmic system may involve more complex equipment for the conversion of an analog 
variable to discrete form than a linear system would. However, the digital system which uses 
the discrete outputs of the logarithmic system will have fewer bits upon which to operate (for 
equal percentage errors)  and will consequently be less complex. This feature is particularly at- 
tractive in the telemetry business where it is frequently necessary to transmit a maximum of in- 
formation with a minimum number of bits in order to conserve bandwidth and transmitter power. 

(Manuscript received October 3, 1963) 
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Appendix A 

Derivation of the 1 /Q Relationship 

It may be shown that for constant R, N varies as 1/Q. In the case of constant R ,  Equation 9 

becomes 

The logarithms in the right-hand terms may be taken to any convenient base. By the properties of 
logarithims, 

The left hand terms of Equation A2 may conveniently be expanded in a power ser ies  by applica- 
tion of the relation:* 

1 1 1 
(A3 ) l o g e ( l t X )  = x - - x *  2 t - X 3 - - X 4  3 4 t ... . 

This yields 

log, ( l t  A) = & - f t ;  (&)I -; t e * *  ’ 

- loge (1- A) = t ;  t ; t + (&J4 t * * e  * 

Hence, 

ti t e . .  ; 

* H a d b o k  of Chemistry and Physics, 43rd ed., pg. 323. 
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Q and therefore, if 100 << 1 , 

By using the relation* 

Equation A7 may also be written 

- 
*Handbook of Chemistry and Physics, 43rd ed., pg. 12. 
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Appendix B 

Symbols 

B 

K = x+/x-, the dynamic range covered by one quantization interval 

number of bits required for N intervals 

N 

Q+ 

Q- 

Q 

Qb: 

Q f: 

Q<S 

Q f"s 

R 

X 

X 

X 

X+ 

Y 

y x  

number of quantization intervals required 

maximum possible positive percentage e r ro r  

maximum possible negative percentage e r ro r  

maximum possible f percentage e r ro r  

bottom of scale percentage e r ro r  for system A 

fu l l  scale percentage e r ro r  for system A 

bottom of scale percentage e r ro r  for system C 

fu l l  scale percentage e r ro r  for system C 

dynamic range over which the input variable is to be quantized 

analog input variable 

an arbitrary quantization interval 

lower limit of quantization interval x 

upper limit of quantization interval X 

discrete output variable or  system C 

value of output variable corresponding to quantization interval X 

G- 524 NASA-Langley, 1964 17 
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